Guideline for the use of Neonatal Therapeutic Hypothermia (“Cooling”)

V2.1 February 2018

Due for review – February 2019
Northern Neonatal Network guideline

Therapeutic hypothermia in newborn infants with probable hypoxic ischaemic encephalopathy

Purpose

This guideline covers the potential role of therapeutic hypothermia for infants born within or referred in to the Northern Neonatal Network with an encephalopathy that is likely to be of a hypoxic-ischaemic origin. It includes the meta-analysis and guidance from NICE that was disseminated in May 2010.

It does not cover investigations or management of neonatal encephalopathy, but wider guidance based on the RVI guideline is available below

Link 1 - further guidance on Cooling

Summary

- Cooling should be considered in infants ≥ 36 weeks with clinical encephalopathy and a history suggestive of a hypoxic-ischaemic insult. Use the TOBY entry criteria (see below) to identify those babies who should be discussed as soon as possible.
- The earlier cooling commences the greater the likely efficacy
- Passive cooling can be commenced at the hospital of birth whilst awaiting transfer but must be carefully monitored, preferably with a rectal temperature probe
- Active cooling treatment is currently provided in each of the four Network NICUs – RVI, JCUH, Sunderland & North Tees.
- Early contact with the tertiary centres offering cooling is advised via the usual transport ‘hot-line’ number:
 - RVI 0191 2303020

Background

There is good animal evidence that cooling after hypoxic insults results in an improvement in cerebral damage as measured by both histological and behavioural changes. This appears to be modulated by interference with the cascade of events that leads to secondary metabolism failure and later cell death. Human neonatal data is now supportive of a similar effect.

From 1998 human studies have been undertaken to try and assess whether cooling
reduces (the combined outcome) death or disability in newborn infants believed to have sustained a recent cerebral hypoxic insult\(^1,2,3,4\) and measures of neurologic outcomes\(^4\). These studies used either clinical\(^2\) or combined clinical and cerebral function\(^1,3,4\) (CFM) entry criteria. The UK cooling trial was the TOBY study (https://www.npeu.ox.ac.uk/toby) a randomised controlled trial of standard intensive care with or without whole body cooling in infants >36 weeks gestation identified by combined clinical and CFM criteria. Outcome data at 18 months of age were published in October 2009\(^4\); later outcomes will also be made available.

Evidence for cooling

Careful consideration of the published evidence to date suggests the following\(^5\):

- Cooling to a target temperature of 33.5°C is feasible and the physiological changes are well tolerated by the majority of infants
- Individually, the trials show the following effect of cooling for combined death or disability:
 - Coolcap\(^1\) (n=228) OR 0.82 (95% CI 0.66-1.02)
 - Eicher\(^2\) (n=52) OR 0.62 (95% CI 0.41-0.92)
 - NICHD\(^3\) (n=208) OR 0.72 (95% CI 0.56-0.95)
 - TOBY\(^4\) (n =325) OR 0.86 (95% CI 0.68-1.07)
- Using meta-analysis on studies 1, 3 and 4 above the odds ratio for combined death or disability was 0.81 (95% CI 0.71-0.93)\(^5\).

Neurological outcomes after therapeutic hypothermia

A range of (pre-specified) secondary outcomes assessing neurological status after cooling have also been subject to meta-analysis\(^5\) including the rate of survival without neurologic abnormality (no CP, normal MDI and PDI): this was significantly increased OR 1.53 (95%CI 1.22-1.93) with a number needed to treat of 8, and for CP alone 0.67 (95%CI 0.54-0.89) with a number needed to treat also of 8.

There are still some methodological considerations that clinicians need to be aware of. The cooling studies are thought to have the potential for withdrawal bias affecting the combined outcome data (the study cannot be ‘blinded’)\(^6\), but in TOBY there were actually more withdrawals in the cooled group.

Based on these findings many clinicians feel that therapeutic hypothermia is now appropriate. Data collected on infants y cooled in the UK using the TOBY register (https://www.npeu.ox.ac.uk/tobregister)\(^7\) showed 120 infants cooled as per the TOBY protocol, in infants from 34-44 weeks gestation, without apparent adverse events and with an improvement in their encephalopathy score.

NICE have also produced guidance on therapeutic hypothermia for clinicians (IPG 347, May 2010 - https://www.nice.org.uk/guidance/ipg347) and an information for parents is available here.
Management

Suggested approach to cooling

Suitable infants:
Suitable infants are likely to be those who are identifiable as coming from the group of infants studied so far, i.e. those with:

Criterion 1
Gestational age ≥36w with at least one of the following:

- Apgar score of ≤5 at 10 minutes after birth
- Continued need for resuscitation, including ET or mask ventilation, at 10 minutes after birth
- Acidosis within 60 minutes of birth (pH from cord, capillary or arterial sample of <7.00)
- Base deficit ≥16mmol/l in any sample (arterial, venous or capillary) within 60 minutes of birth

Infants who meet any of the above criteria will then be assessed as to whether:

Gestational age < 36w: Cooling has now taken place down to 34 weeks in some situations.

Criterion 2
They show moderate to severe encephalopathy, consisting of altered state of consciousness (lethargy, stupor or coma) AND at least one of the following:

- Hypotonia
- Abnormal reflexes including oculomotor or pupillary abnormalities
- An absent or weak suck
- Clinical seizures

IF INFANTS HAVE ONE OR MORE OF THE SIGNS FROM CRITERION 1 AND THEN ONE OR MORE FROM CRITERION 2, THEY SHOULD BE DISCUSSED URGENTLY WITH ONE OF THE COOLING CENTRES

Abnormal CFM (if available can be very helpful, but the lack of availability should not delay discussion/cooling; no CFM was used at entry to the Eicher study²)

Assessment: Appendix 1
Use the structured neurological examination sheet to perform and document a full neurological examination, including reflexes and level of consciousness on at least a daily basis over the first few days.

Link 2 - actions for referring hospitals
The ultimate decision to cool rests with the responsible clinician, and occasional babies may be felt to potentially benefit from cooling outside these criteria. This should be carefully documented.

Timing and location of cooling

Current evidence is highly suggestive that the earlier that cooling is initiated the greater the potential benefit. Cooling can commence passively (i.e. by stopping active warming, opening incubator doors etc but NOT by the use of fans or ice) and target temperatures (33.5 °C +/- 0.5 °C) can be achieved this way (this was undertaken before arrival at a TOBY centre as part of the TOBY study).

Infants born in hospitals that are unable to deliver active cooling but whom the referring clinician feels might benefit from cooling should be discussed as soon as possible with either the RVI or NNeTS via the normal transfer request mechanisms.

TOBY has produced guidance on both passive cooling, and transportation during cooling, available at https://www.npeu.ox.ac.uk/tobyregister/transport. This guidance suggests that passive cooling should not be undertaken until a formal cooling bed has been located. The Northern Network feels that the benefits of earlier cooling are significant and suggest that passive cooling should commence as soon as possible. **It is important to avoid excessive hypothermia** and temperatures must be monitored carefully (ideally using a rectal probe) and suitable adjustments made to the environment whether cooling is actively or passively undertaken. Infants who are being cooled may benefit from earlier respiratory support and secure arterial and venous access and this aspect should also be discussed with the cooling centre.

Link 3 - Passive Cooling Flow Chart

Link 4 - Transport Cooling Flow Chart

Parental information

The clinical reason for offering cooling and the accompanying parental discussion should be captured in the notes. Parents should also be made aware of the cooling registry (which captures anonymised data), but this can be done at a later stage.

Cooling protocol

Active cooling is currently usually undertaken in accordance with the guidance produced by the NPEU TOBY team, which is available at https://www.npeu.ox.ac.uk/toby/protocol
Brief cooling summary:

Target temperature is 33.5°C +/- 0.5°C
Commence as soon as possible
Duration of cooling is generally 72 hours
Re-warming should be at maximum 0.3°C per hour (Azzopardi et al 2010)
Structured Neurological Examination

References

<table>
<thead>
<tr>
<th>NEUROLOGICAL EXAMINATION WITHIN 6 HOURS OF AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATEGORIES (TOTAL 6)</td>
</tr>
<tr>
<td>SIGNS OF NEONATAL ENCEPHALOPATHY (NE) IN EACH CATEGORY</td>
</tr>
<tr>
<td>(Circle the most appropriate level)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NORMAL</th>
<th>MILD NE</th>
<th>MODERATE NE</th>
<th>SEVERE NE</th>
</tr>
</thead>
</table>

1. LEVEL OF CONSCIOUSNESS

- **0** ALERT, RESPONSIVE TO EXTERNAL STIMULI (STATE DEPENDENT e.g., POST FEEDS)
- **1** HYPER-ALERT, HAS A STARE, JITTERINESS, HIGH-PITCHED CRY, EXAGGERATED RESPONSE TO MINIMAL STIMULI, INCONSOLABLE
- **2** LETHARGIC
- **3** STUPOR / COMA

2. SPONTANEOUS ACTIVITY

- **0** CHANGES POSITION WHEN AWAKE
- **1** NORMAL OR DECREASED ACTIVITY
- **2** DECREASED ACTIVITY
- **3** NO ACTIVITY

3. POSTURE

- **0** PREDOMINANTLY FLEXED WHEN QUIET
- **1** MILD FLEXION OF DISTAL JOINTS (FINGERS, WRIST USUALLY)
- **2** MODERATE FLEXION OF DISTAL JOINT, COMPLETE EXTENSION
- **3** DECEREBRATE

4. TONE

- **0** STRONG FLEXOR TONE IN ALL EXTREMITIES AND STRONG FLEXOR HIP TONE
- **1** NORMAL OR SLIGHTLY INCREASED PERIPHERAL TONE
- **2a** HYPOTONIA (FOCAL OR GENERAL)
- **2b** HYPERTONIA
- **3a** FLACCID
- **3b** RIGID

5. PRIMITIVE REFLEXES

SUCK

- **0** STRONG, EASILY ELICITABLE
- **1** WEAK, POOR
- **2** WEAK OR HAS BITE
- **3** ABSENT

MORO

- **0** COMPLETE
- **1** PARTIAL RESPONSE, LOW THRESHOLD TO ELICIT
- **2** INCOMPLETE
- **3** ABSENT

6. AUTONOMIC SYSTEM

PUPILS

- **0** IN DARK: 2.5-4.5 mm.
 - IN LIGHT: 1.5-2.5 mm.
- **1** MYDRIASIS
- **2** CONSTRICITED
- **3** DEVIATION/DILATED/ NON-REACTIVE TO LIGHT

HEART RATE

- **0** 100-160 bpm
- **1** TACHYCARDIA (HR > 160)
- **2** BRADYCARDIA (HR < 100)
- **3** VARIABLE HEART RATE

RESPIRATION

- **0** REGULAR RESPIRATION
- **1** HYPERVENTILATION (RR > 60/min)
- **2** PERIODIC BREATHING
- **3** APNEA OR REQUIRES VENTILATOR

* SEIZURE

- **NONE**
- **YES / NO**

TOTAL SCORE

FINAL ALLOCATED NE STAGE (PLEASE TICK ONE)

- [] NO NE
- [] MILD NE
- [] MODERATE NE
- [] SEVERE NE
6. Ziino AJA. Palliation bias is being overlooked in neonatal hypothermia trials. *Arch Dis Child.* Published Online First: 27 Feb 2006, doi: 10.1136/adc.2006.097394
Consultation History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>V 1.0</td>
<td>June 2010</td>
<td>Network for comment</td>
</tr>
<tr>
<td>V 1.1</td>
<td>February 2011</td>
<td>Network Management Team</td>
</tr>
<tr>
<td>V 1.2</td>
<td>September 2011</td>
<td>Network Guideline Group</td>
</tr>
<tr>
<td>V 1.2</td>
<td>October 2011</td>
<td>Network Board</td>
</tr>
<tr>
<td>V 1.3</td>
<td>March 2015</td>
<td>Network Guideline Group</td>
</tr>
<tr>
<td>V 2.0</td>
<td>March 2017</td>
<td>Author for update and revision/Clinical Lead</td>
</tr>
<tr>
<td>V 2.1</td>
<td>February 2018</td>
<td>Sundeep Harigopal</td>
</tr>
</tbody>
</table>